Emg Signal Noise Removal Using Neural Netwoks

نویسنده

  • Vijay R. Mankar
چکیده

The bioelectric potentials associated with muscle activity constitute the Electromyogram, abbreviated as EMG. These potentials may be measured at the surface of the body near a muscle of interest or directly from the muscle by penetrating the skin with needle electrodes. Since most EMG measurements are intended to obtain an indication of the amount of activity of a given muscle, or group of muscles, rather than that of an individual muscle fiber, the pattern is usually a summation of the individual action potentials from the fibers constituting the muscle or muscles being measured. EMG electrodes pick up potentials from all muscles within the range of the electrodes, hence potentials from nearby large muscles may interfere with attempts to measure the EMG from smaller muscles, even though the electrodes are placed directly over the small muscles. Where this is a problem, needle electrodes inserted directly into the muscle are required. [Bronzino, J.D. (ed), 1995] The action potential of a given muscle (or nerve fiber) has a fixed magnitude, regardless of the intensity of the stimulus that generates the response. Thus, in a muscle, the intensity with which the muscle acts does not increase the net height of the action potential pulse but does increase the rate with which each muscle fiber fires and the number of fibers that are activated at any given time. The amplitude of the measured EMG waveform is the instantaneous sum of all the action potentials generated at any given time. Because these action potentials occur in both positive and negative polarities at a given pair of electrodes, they sometimes add and sometimes cancel. Thus, the EMG waveform appears very much like a random-noise waveform, with the energy of the signal a function of the amount of muscle activity and electrode placement. Typical EMG waveforms are shown in Figure 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique

Background: The electrocardiogram artifact is a major contamination in the electromyogram signals when electromyogram signal is recorded from upper trunk muscles and because of that the contaminated electromyogram is not useful.Objective: Removing electrocardiogram contamination from electromyogram signals.Methods: In this paper, the clean electromyogram signal, electrocardiogram artifact and e...

متن کامل

Design of Adaptive Filter for Noise Removal from a Typical Emg Signal Using a Generalized Neural Network

Abstract The bioelectric potentials associated with muscle activity constitute the electromyogram (EMG). EMG signal is being used in biomedical applications in order to detect abnormal muscle electrical activities that occur in many diseases and conditions like muscular dystrophy, inflammation of muscles, pinched nerves, peripheral nerve damages, amyotrophic lateral sclerosis, disc herniation, ...

متن کامل

Use of Rbf Neural Network in Emg Signal Noise Removal

The bioelectric potentials associated with muscle activity constitute the electromyogram (EMG). EMG signal is used in biomedical applications to detect abnormal muscle electrical activity that occur in many diseases and conditions like muscular dystrophy, inflammation of muscles, pinched nerves, peripheral nerve damages, amyotrophic lateral sclerosis, disc herniation, myasthenia gravis and othe...

متن کامل

Adaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning

Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012